the work is continued in brick arches of 20 ft. in span, to which access is obtained from the street by means of a gateway in each abutment, and, from arch to arch, through an opening in each pier. An extensive series of vaulting is thus obtained, most valuable near Farrington-street, where the maximum headway is attained, and which, of course, gradually decreases as the new and old street levels approach and meet.

The subway forms the upper portion of a high arched chamber, 7 ft. wide, and of a depth increasing towards Farrington-street, the lower portion of this chamber being devoted to the sewer, which drains the new street. The subway has a constant height of 11 ft. 6 in., and contains cast-iron brackets built into the wall, on the one side to carry water and gas mains; to the other the telegraph pipes are attached. The flooring of this chamber is of York landings, and a tram rail is laid along the whole length to facilitate the moving of the heavy pipes in the course of any alterations or additions to the mains. On the flooring along the inner side a channel has been cut to carry off any drainage that may accumulate in the chamber, and also the drainage collected in the spandrels of the viaduct arches, which is conveyed from them to the subway by pipes, which terminate in an open end just above the channel in the flooring. The position occupied by the subway and sewer chamber is under the pavement of the new street, and immediately outside the side walls of the main arches of the viaduct, which do not extend beyond the carriage way. But as the width of the footway is 15 ft., and that of the subway only 7 ft., the rest of the space is occupied with the cellarage room of the new houses to be erected. About 2 ft. width of the footways extending along the whole frontage of the houses will be fitted with glazed area lights to light these cellars. Small openings are made in the side walls of the subway next to the cellars, by which the service pipes, both gas and water, may be led in to the houses, and the ventilation is maintained by means of small circular ventilators placed 40 ft. apart, and opening upon the footway, where they are covered with gratings, by perforations in the pedestals of the lamp posts, and every 40 ft. by pipes that tap the crown of the subway, and rise in the party walls of the houses to the level of their chimney stacks. Each subway is further ventilated by means of large grated doors at one or both ends.

Below the subway is the sewer, the invert of which is laid on the top of the concrete, carrying the footings of the viaduct. It is 2 ft. 6 in. wide, and 2 ft. 6 in. deep, uncovered, and running as a deep channel along-