Fig. 11, Plate LXX., shows the bedplates used for the abutments, which are similar to those on the cylinders. The former are 2 ft. wide by 2 ft. 6 in. long, 1½ in. thick at the bottom of the grooves, and 1¼ in. at the bearing surface, increased at the projecting lugs on the side to 2½ in. The bedplates for the intermediate bearings are 4 ft. 2 in. long by 2 ft. wide, the general dimensions being the same as for the abutment plates. A layer of felt is interposed between the bedplate and the bedstone in each case, and two 1½ in. square holding-down bolts, 5 ft. long, furnished with a wrought-iron washer 12 in. square, and a cotter, retain the bedplates in position.

Cover strips for the web, as shown in Fig. 3, Plate LXIX., occur at intervals of 5 ft. 10 in., and T-irons and plate stiffeners are also placed at intervals of 5 ft. 10 in. apart, from end to end of the bridge. These stiffeners are of a varying depth, on account of the removed form of the bottom flange, the top level being the same as that of the underside of the cross girders, as shown in Figs. 3 and 8. The stiffeners are of the same construction throughout, the T-irons being 5 in. by 3 in. by ¾ in., and the plates ¾ in. thick. Fig. 8 shows one of the stiffeners of minimum depth in the centre of the main span, and Fig. 7 another of maximum section over the pier. The depth of the girder in the centre of the middle span is 3 ft.

The cross girders, 22 ft. 5½ in. long, are shown in elevation and section by Figs. 8 and 10, Plate LXX. They are placed 5 ft. 10 in. apart, and consist each of a bottom flange of two plates 9 in. by ¾ in., a web ¾ in. thick, with angle irons at the bottom 3 in. by 3 in. by ¾ in., and one angle iron at the top of the same size. The rivets are ¼ in. in diameter and 4 in. pitch. The depth of these girders is 1 ft. 6 in., and they are riveted at the ends to the main girders, and on the underside by four rivets to the T-iron stiffeners before described, as forming part of the main girder. There are two T-iron cover strips for the web, 4 in. by 4 in. by ¾ in.

The bay between each abutment and the adjacent cross girder—a distance of 6 ft. 4 in.—is spanned by five light longitudinal beams, placed 3 ft. 8½ in. apart (see Fig. 11), resting at one end on the abutment, where they have a bearing of 9 in., and rivetted at the other end to the cross girder by six rivets ¾ in. in diameter, and 4 in. apart—the size and pitch of the rivets used throughout these beams. The latter are 12 in. deep, with a web-plate ¾ in. thick, and top and bottom T-irons 4 in. by 3 in. by ¾ in.; at the ends are two angle irons 3 in. by 3 in. by ¾ in.

The flooring of the bridge is made with sagged wrought-iron plates, seen in Fig. 10. These plates are ¾ in. thick, and have a deflection of 2½ in. in the centre, as shown in the section; they are 5 ft. 10 in. wide, corresponding to the distance apart of the cross girders, and 3 ft. 8½ in. long. Between the cross girders at intervals of 3 ft. 8½ in. are rivetted cross T-irons 4 in. by 4 in. by ¾ in., curved to the sag of the floor plates, and serving as joint strips to which the plates are rivetted. Every alternate bay has a T-iron of a special form, as shown in section, Fig. 10, where it will be seen that instead of stopping against the web of the upper angle iron, these special T-irons extend down to the bottom flange. In section, Fig. 8, it will be seen that the floor plates do not extend as far as the main girder, but are stopped 7 in. from the side angle iron, so that the plates lie under the main flanges for a distance of 3½ in. It will also be seen, in Fig. 10, that at the longitudinal joints of the floor plates at each cross girder, the ends of the plates overlap each other above the upper angle iron of the girder, to which they are rivetted by rivets ¾ in. in diameter, and 4 in. pitch. The transverse joints of the floor plates, however, do not lap, but meet each other over the T-iron curved beams before described, and to which they are rivetted. In the width of the bridge between the main girders there are six floor plates 3 ft. 8½ in. long, excepting the two outside ones, which are 3 ft. 14 in., the difference being occasioned by stopping the plates short of the main girders, as just mentioned. Between the abutments and the first cross girders the floor plates are not sagged but flat; they are made ¾ in. instead of ¾ in. thick, and lie on the tops of the short longitudinal bearers, to which they are fastened by rivets ¾ in. in diameter, and 4 in. pitch. One end of these plates overlaps that of the first sagged plate on top of the first cross girder, and is rivetted to it, as shown in Fig. 11.

Figs. 5 and 8, Plate LXIX., and Figs. 1, 4, 6, and 8, Plate LXX., show full details of the construction of the footpaths, brackets, parapets, &c. We have already described how the piers, rising from the cylinders, terminate in diverging brackets to support the footpaths where they occur, and the taste and skill with which this difficult feature in the design has been treated are considerable. To the outside of the main girder, at intervals of 5 ft. 10 in., cast-iron brackets are secured. These brackets are shown in Fig. 5, Plate LXIX. They are 3 ft. 11½ in. long from the back face to the centre line of the parapet, and 1 ft. 6 in. deep to the underside of the main girder flange, beyond which they rise sufficiently to give the necessary elevation and slope to the footway. The ends of the brackets range with the face of the facia moulding, and in the centre line of the parapet above each bracket carries a pendant, as shown in Figs. 5 and 8. The top of each bracket carries a flange, 4 in. wide, stopping short of the parapet centre line, and a web ¾ in. thick and 2½ in. deep rises from the centre of this flange, dividing it into two equal parts, each 1½ in. wide. Each bracket is fastened to the web of the girder by four tapped screws, ¾ in. in diameter, and at the top by a small loose casting, one