Horizontal strain at \(f = \frac{35,000 \times 75 - 15,000 \times 15(1+2+3+4)}{7.5} \)

\(= 50,000. \)

64,103 less 50,000 = 14,103 = horizontal component.

14,103 \(\times \frac{1}{12} = \) longitudinal tension in \(ef' \), 15,983.

The compressive strain in verticals from a moving load occurs when all panel-points between any given one and the abutment are loaded. Thus \(d \ d' \) is compressed the greatest when \(b \) and \(c \) or \(e \) and \(f \) are loaded. The strain (supposing the load is at \(b \) and \(c \)) on \(d \ d' \) will be the vertical component from \(d \ e' \), less the tension of one panel of dead load. It is necessary, then, to find the longitudinal strain on the different diagonals when the panel-points beyond are loaded, and that of the given diagonal unloaded.

On \(c \ d' \), when \(b \) alone is loaded, reaction = \(\frac{5}{6} w' = 12,500. \)

Horizontal strain at \(c = \frac{12,500 \times 30 - 15,000 \times 15}{11.7} \) = 12,820.

\(\therefore \ d = \frac{12,500 \times 45 - 15,000 \times 30}{13} \) = 8654.

12,820 less 8654 = 4166 = horizontal component, which multiplied by \(\frac{17}{12} = 5521 \) = longitudinal strain. Converting this last strain into vertical strain by multiplying it by the ratio of diagonal to vertical, or \(\frac{18}{20} \), the compression on post \(c \ c' \) from line load is obtained. Since there is always a tension caused by one panel of dead load, the compression above found must be reduced by that amount, to obtain the maximum compression.