In order to complete the comparison between the Fink truss and the diagonal truss, it would be necessary to ascertain the amount of metal in the struts and ties of this latter truss. The lengths of the various struts and ties would be uniformly $\sqrt{14}$, the multiple of strain would therefore be $\sqrt{14}$, and the amount of iron in each of them $1\frac{1}{4} \times$ the units of load:—

On the strut $A\ b$ there would be 4 units.

- $B\ c$ 3½ “
- $C\ d$ 3 “
- $D\ e$ 2½ “
- $E\ f$ 2 “
- $F\ g$ 1½ “
- $G\ h$ 1 “
- $H\ i$ 1½ “

Making a total of 18

This sum multiplied by the 1½, would give 22½
To which must be added the end upright $a\ b$ 3½

Making 26

Or, for the two sides of the truss 52
Adding the amount of metal in the compression member before given 84

The total of iron in compression would then be, as already stated 136

Next, as regarded the parts in tension:—

On the tie $a\ c$ there would be 3½ units.

- $A\ d$ 3 “
- $B\ e$ 2½ “
- $C\ f$ 2 “
- $D\ g$ 1½ “
- $E\ h$ 1 “
- $F\ i$ 1½ “
- $G\ k$ 0 “

Making a total of 14

This, multiplied by 1½, would give 17½