represent; and for that reason it is not proposed to draw any inferences in favor of the original design for two hundred feet span of which this truss is a model; but viewing these results in the light of a comparison of systems, the evidence is undoubtedly in favor of the triangular web. This after all is but the verification by experiment of the general conclusions arrived at in the earlier discussion of the subject, and the later numerical results obtained by a comparison of strains.

We therefore feel qualified in passing to general conclusions eminently favorable to the Isometrical Truss. And in submitting these views to members of the profession who may honor them with a careful inspection, we desire again to repeat that if they can be demonstrated to be clearly at variance with correct reasoning, we shall be only too glad to profit by the criticism.

GENERAL CONCLUSIONS.

The Isometrical Truss, founded as it is upon the most practically accurate web system, is necessarily the most economical form of parallel girder now in use, either of wood or iron. And from a comparison of four well-known iron bridges as instituted by C. Shaler Smith, and submitted in Table III, this remark may be extended to cover the best examples of suspension trusses.

Next to economy of construction comes the question of general availability for all spans and positions. We have not thought it necessary to discuss at any great length the comparative merits of the different trusses in this respect, since it involves an amount of detail which would be anything but interesting, and at best quite unnecessary to the formation of a generally accurate opinion; and after all the great desideratum of a perfect web carries with it advantages which are equally applicable to short or long spans through or deck bridges.

COMPENSATION AND ADJUSTMENT.

As to the elements of compensation and adjustment in the Isometrical Truss, we have seen that owing to the equi-