The above sufficiently explains itself, and the writer will add, that it is not only a complete vindication of the theory heretofore advanced in favor of the "Inflexible Arched Truss," but is an unanswerable refutation of the objection somewhat busily circulated by parties whose interests are not with this bridge, viz., that great danger is to be apprehended from what they are pleased to term "the immense thrust upon the masonry;" while the fact is known, that these bridges have been built upon wooden trestle piers and abutments with perfect success.

For a full plan of this truss, the reader is referred to Fig. 15, and also to the large engraving attached, where the details are shown. Upon inspection, it will be observed that the sustaining principle is very much increased toward the ends of the truss, not only by a large addition to the amount of material at these points, but it will be seen also that the pannels become shorter as the vertical strain increases. The posts are placed upon lines radiating with the arch; the braces form equal angles with the posts; and in this way the latter are made to approach more nearly together toward the ends of the truss.

The reader has already had sufficient evidence of the great strength of this form of truss, and it has also been shown, that the tensile strain upon the lower chord is much less than in any other known plan. In fact, the latter may be entirely severed, and the structure will still be competent to sustain a heavy load. In this, it differs from all other combinations.

Upon referring to Figure 15, which represents a clear span of 180 feet, it will be seen that the arch braces which rest upon the abutments are extended to points on the arch about forty-seven feet from the abutments. From the top of each set of arch braces, running diagonally on each side