hours previous. A slight stampede ensued among the men, 
but no one left the caisson. All appliances for putting it 
out were brought to bear. While the hose was getting 
ready, two large cylinders of carbonic acid gas under two 
hundred and twenty-five pounds pressure were discharged 
into it without producing any effect whatever. As soon as 
the stream was stopped the timber would reignite imme-
diately. The two streams of water, however, soon extin-
guished all fire that could be seen at the time. There was 
a violent draft of air through the burnt aperture. This was 
stopped with cement, and the two streams of water were 
allowed to play in the hole for two hours. At the end of 
that time one of them was replaced by steam at ninety 
pounds pressure, and allowed to run for half an hour. It 
was impossible to ascertain whether the steam was of any 
benefit. It was, therefore, shortly stopped off and the water 
turned on again. The steam may even have aided the draft.

In the meantime the question of flooding the caisson was 
seriously discussed. To extinguish the fire without having 
recourse to this resort was very desirable, yet, on the other 
hand, if the fire was not out, it was simply a question of 
time how soon the entire structure would be destroyed.

One great objection to the flooding was the condition of 
the water shaft, which was capped above and resting below 
on some boulders. A gang of men were busy all night 
digging them out. The flooding would necessarily be ac-
accompanied by some settling of the caisson since it was 
equivalent to an extra weight of twenty-eight thousand 
tons, and if the water shaft came down on the boulders it 
might become so crippled as to impair the tightness of the 
caisson permanently.

The problem to be asked in the flooding was to substitute 
the compressed air by the water poured in through the 
water shafts from above, and to so regulate the escape of 
the air as to always maintain the same pressure against the 
roof of the caisson, even up to the last inch below the roof, 
until the water had entirely replaced the air. The supply 
of the former would of course be limited and variable, and 
if the air should be all out before the water had reached the