APPENDIX B.

To find tension of cables:
Let \(x \) represent deflection.
\(y \) " half the span.
\(W \) " weight of cables and load equally distributed.
\(T \) " tension resulting,
and the following formula will give the value of tension.

\[
T = \frac{W}{4x} \sqrt{\frac{2}{4x^{2} + y^{2}}}
\]

Substitute for \(x \), 59 and \(y \), 410.66, and

\[
T = \frac{W}{4 \times 59} \sqrt{\frac{2}{4 \times 59^{2} + 410.66^{2}}}
\]
or \(T = W \times 1.81 \).

The tension of the cables therefore will be obtained by multiplying the weight \(W \) by the factor 1.81.

APPENDIX C.

The length of span and deflection being known, to find the length of the cable, calculated as a parabola:
Let \(y \) express half the length of span.
" \(x \) " deflection.
" \(z \) " half the length of cable.

Then \(Z = \sqrt{\frac{y^{2}}{2} + \frac{4}{3}x^{2}} \)

The following formula will give deflection when length of span and of cable are known.

\[
X = \sqrt{\frac{3}{4} \left(\frac{z}{y} - y^{3} \right)}
\]

THE END.