erated in the directions of the lines ao, on, ob and oc, of which ao has just been found equal to $3w \sqrt{2}$, and ob is equal to w, being simply the weight resting at the point o. Then, extending ao and taking $op = ao$ to represent $3w \sqrt{2}$, letting fall the perpendicular $pq = \frac{3}{4}ob$, we have oq, representing the resultant of ao and ob, which reduces the forces to 3. Then drawing qr parallel with oc, qr obviously represents the tension of oc, which is equal to $2w \sqrt{2}$, and or represents the thrust of on, which is equal to $5w$. The tension of bc is $3w$, the same as that of ab, since the parts ob and bn have no action.

Nextly, at the point c, the tension of oc has a horizontal action equal to $2w$, which added to the tension of $bc (=3w)$ gives $5w$ as the tension of cd. The tension of oc has also an upward action equal $2w$, counteracted by the thrust of cn, which, of course, is also equal to $2w$. One half of this thrust of cn, is counteracted by the weight w at n, and the other half by the oblique action of nd, which, of consequence, is equal to $w \sqrt{2}$, and exerts a horizontal force equal to w upon the part nm. But nm is also acted on in the same direction by the thrust of on, before shewn to be equal to $5w$, consequently the thrust of nm is equal to $6w$.

At d, the horizontal action of nd, ($=w$) in addition to the tension of cd, ($=5w$) gives $6w$ as the tension of dc. The upward action of nd ($=w$) just sustains the weight w at m, through the medium of dm, and the thrust of nm ($=6w$) is counteracted by the thrust of ml, which, of course, must also be equal to $6w$.