The chains hb, hc, hd, &c., should be supported at suitable intervals, to prevent them from assuming a curved form, by which they would, in a measure, be liable to the same difficulties from undulating motion as the common suspension bridge; though to a much less degree. This support may be given to the chains by vertical rods or studs running up from the platform, or by a curved chain $hmni$, from which those below may be suspended, and those above, supported by stiff rods. Whatever may be supported by this curved chain, will leave so much less to be sustained by other parts of the structure, and the latter may be proportionally smaller.

To estimate the quantity of iron in this structure, let us assume $ag=450$, and $ah=75$ feet $=ab$. Now, the material in each part, is as the stress multiplied by the length of the part. But the stress is as the weight sustained, multiplied by the length, therefore, the material is as the weight, multiplied by the square of the length.

Making $ab=1$, hb will be equal to $\sqrt{2}$ and $hb^2=2$. But the weight sustained by $hb=\text{W}$. Hence the material in hb may be represented by $hb^2 \text{W}=2 \text{W}$.

Again, $hc^2=ha^2+ac^2=1^2+2^2=5$, and the weight sustained by hc, being $\frac{2}{3} \text{W}$, the material will be represented by $\frac{2}{3} \text{W} \times 5=\frac{10}{3} \text{W}$.

In like manner, the material in hd, may be represented by $\frac{1}{2} \text{W} \times 10=5 \text{W}$, and the material in hc, by $\frac{1}{3} \text{W} 17=\frac{17}{3} \text{W}$.

Adding these amounts together, we have 16W to represent the material in hb, hc, hd, and hc, and 32W for the same, together with the corresponding chains ci, di, &c.

Now, the unit in this expression $=75$ feet, and $\text{W}=150,000$ lbs. plus $\frac{1}{6}$ the weight of the structure between piers, which we will assume at $66,000$ lbs., making $\text{W}=216,000$ lbs.

To sustain this weight at $12,000$ lbs. to the square inch, will require 18 square inches cross section of iron, or about 60 lbs. to the foot. This multiplied by 75, gives 4500 lbs., which substituted for W in the expression 32W,