to the abutment. At the top, b forms a bevel joint with the top stringer.

The vertical d, is 12×3 inches; passes through e in the middle, and k at the lower end, where d and k are both secured to the stringer by two $1\frac{1}{4}$ inch bolts. The cross beam at this point may be let into the edge of d, 3 inches, and boxed, so as to bring the centre of the beam within 4 inches of the centre of d. At the upper end, d terminates in two pieces of 2 inch plank, 5 feet long, one on each side; locked $\frac{1}{2}$ or $\frac{3}{8}$ inch deep, bolted and spiked, so as to occupy a space of 6 inches from out to out, and cut away on the inside, so as to make room for g, which is 3×12 inches.

The oblique piece f, 9×4 inches, passes through e, k, and l; being secured at the lower end by two $1\frac{1}{4}$ inch bolts, and a $1\frac{1}{4}$ inch pin, 9 inches long, with bearing plates, 2 or $2\frac{1}{2} \times 3 \times \frac{1}{4}$ inch, on the under side of k. At the upper end, f has 2 pieces of 3×12 inch plank about 7 feet long, locked on $\frac{3}{8}$ inch deep, and spreading so as to be 11 inches from out to out at the end; boxed 1 inch on each outside, to receive the top stringer and the brace b; and cut away inside, making a space of 6 inches for d. The piece f should extend 9 or 10 inches above the stringer. Two $1\frac{3}{4}$ inch bolts through the whole, and two $1\frac{1}{4}$ inch iron pins through all but the stringer and brace, will be sufficient for this point.

The diagonal e, 4×9 inches, at the upper end, has a shoulder of 1 inch on each side, cut vertically, and acting against the end of the inner plank of the top stringer. It has a $1\frac{3}{4}$ inch bolt and 2 iron pins, $1\frac{1}{2}$ inch, and 7 inches long, through i, on the upper side of e, with bearing plates under the ends of the pins.

The diagonal l, ($3\frac{1}{2} \times 9$ inches,) and the top stringer, are each boxed 1 inch, to let in the width of the other; with two $1\frac{1}{4}$ inch bolts. l has 5 mortices, including those at the ends, as have also the other diagonals that stand edgewise to view in the plan.