Note 13. Trusses with parallel Chords.

The following convenient practical method of calculating the effects of load upon trusses with parallel Chords, (adopting the popular use of the term Chords, for the upper and lower horizontal parts of the truss,) may be read with advantage in connection with pages 11, 12, &c. of the original, and in fact, it may supersede, in a measure, the illustration given with reference to Fig. 7, page 12.

Make a rough diagram of the truss to be analyzed,—say, like Fig. 38, next page; omitting the letters. Place a series of numbers, 1, 2, 3, 4, &c., over the bearing points, o, n, m, l, &c., respectively, high enough above the upper chord to admit of a second series under the former, formed by repeating the 1 under itself, then adding 1 & 2, and placing the amount, (3,) under 2; also, the sum of 1, 2, & 3, equal to 6, under 3, and so on, placing under each figure of the first series, the sum of all the figures in that series, up to and including the figure under which the sum is to be placed.

Then, to find the greatest weight ever sustained by bn, or any diagonal parallel therewith, take the number in the lower series directly above the lower end of the diagonal, (which we are now supposing to act by tension,) and the product of that number multiplied by w, (w representing the extreme load for each bearing point of the truss,) and divided by the number of panels in the truss, gives the maxi-