Note 14.

Referring to Paragraph beginning with the 15th line from the bottom of Page 29.

\[
\frac{h^2}{p} + p = h^2 p^{-1} + p, \quad \text{of which, the differential is} \ldots - h^2 p^{-2} dp + dp, \quad (dp \text{ denoting the differential of } p). \quad \text{Then, making this differential equal to } 0, \quad \text{we have} \quad -h^2 p^{-2} dp + dp = 0; \quad \ast \quad \text{whence,} \quad h^2 p^{-2} dp = dp, \quad \text{and} \quad h^2 p^{-2} = 1, = h^2(1 + p^2), = h^2 + p^2. \quad \text{Hence,} \quad h^2 = p^2, \quad \text{and} \quad h = p.
\]

Note 15.

To Paragraph beginning at the 4th line of Page 30.

The differential of the function \(h = (h^2 + p^2) \), of the variable quantity \(h \),

\[
\frac{(h^2 + p^2) dh - 2h^2 dh}{(h^2 + p^2)^2}
\]

which, being multiplied by the denominator, and made equal to 0, gives \(h^2 dh + p^2 dh = 2h^2 dh \).

Whence, by subtraction, division, & evolution, we derive \(h = p \), as stated in the original text.

* p & h, whether Italic or Roman, in Notes 14, 15, and 16; indicate the Perpendicular and horizontal reaches of the Diagonals of Bridge Trusses; and d, before a letter, or the Function of a letter; denotes the Differential of that letter or function.