co-efficients used before W, to express the weights respectively sustained by the several oblique rods, in Truss 43, will, when multiplied by the squares of the respective lengths of those obliques, show the amount of material required for their construction, under the conditions above expressed.

Let $m = \frac{1}{8}M$, and $n = be$. Then, we manifestly have for material in the 14 obliques of the truss in question, $7m.(n^2 + 1), + 6m.(4n^2 + 1), + 5m.(9n^2 + 1)
\ldots &c., \text{ to } + 1m.(49n^2 + 1)$; for those meeting at a, with a like amount for those meeting at l.

Fig. 43,—Rollman Truss.

From the above, we readily deduce $(672n^2 + 56) \times m$. But $n^2 = 0.694$, which being substituted in the last expression, gives $494.368m$, which equals $65.296M$, = material required to sustain tension, in Truss Fig. 43.

The thrust of the Chord al, equals the horizontal action of the 7 obliques connected with either end. Then, making $x = \frac{1}{8}W$, and $n = be = \frac{1}{8}bk$; it is obvious that each oblique carries a weight equal to $x \times$ the number of panels not crossed by it, while its horizontal reach $= n \times$ the number of