is \(8 \times \frac{1}{2}(n^2 + 1) + 4 \times 1(4n^2 + 1) + 2 \times 2(16n^2 + 1) \) M, being the number of pieces in each class, multiplied by co-efficients of W in weights sustained, and squares of lengths respectively, and the sum of products multiplied by M. [See Pages 168...9.]

Substituting in the above expression, the value of \(n^2 \), (0.964,) and, reducing & adding terms; we derive .. Materials in obliques = 70.296 M.

Fig. 44,—Finck Truss.

The Compression upon the Chord \(al \) is equal to the horizontal action of one member of each of the three classes of obliques, communicated at each end; that is, equal to \(\left(\frac{1}{2}n + 2n + 8n \right) \times W, = 10\frac{1}{2}n \times W \); and, multiplying by length, & substituting .833 for \(n \), and M for W, we have \(8.75 \times 6.66 \times M, = 58\frac{1}{3}M, \) material required in \(al \); being the same as in case of Fig. 43.

The uprights of the Finck Truss, obviously sustain an aggregate of \(12W \), being \(3\frac{1}{2} \) at each end, 3 at the centre, and 1 at each of the two quarterings, \(r & n \). But, as it seems reasonable in comparing this with the Bollman truss, I propose to