ORDINARY IRON HIGHWAY-BRIDGES.

Taking the centre of moments at E, the moment of the pressure is

$$2Pd + 2P'(d - f),$$

which can be resisted only by the moment of a released weight V upon the foot at F; thus,

$$2Pd + 2P'(d - f) = Vb,$$

and

$$V = \frac{2d(P + P') - 2P'f}{b}.$$

This release of weight V must pass up the vibration rod KG, causing a tension therein equal to

$$V \sec \theta = \frac{2d(P + P') - 2P'f}{b} \sec \theta.$$

To find the stress on the strut JK, pass a plane through the sway bracing, cutting GH, GK, and JK (HG not being strained); take the centre of moments at G, and consider the forces acting on the left side of the truss; then the moment of the stress in JK will balance the moments of P' and $\frac{1}{2}H$, thus,

$$(JK) = \frac{\frac{1}{2}Hd - P'f}{f} = \frac{d}{f}(P + P') - P',$$

to which must be added the horizontal component of the initial tension in JH. (JK) represents the stress in JK.

The stress in the upper lateral strut GH is that due to the wind pressure, considering it as a portion of the upper lateral system plus the sum of the horizontal components of the initial tensions in the three rods meeting at one of its ends.

If GH be considered as a portion of the vertical sway bracing, its stress may be found by passing a plane, as in the last case, and taking the centre of moments at K, considering the external forces acting on the left-hand half of the truss; then the moment of the stress in GH will balance the moments of the horizontal re-action at E and the pressure at G, the moment of the increased weight at E balancing the moment of the increased re-action; thus,

$$(GH) = \frac{\frac{1}{2}H(d - f) + Pf}{f} = \frac{d}{f}(P + P') - P',$$

or equal to the stress in JK.