METHOD OF FINDING THE LENGTH OF THE LONG DIAGONALS IN A DOUBLE-INTERSECTION BRIDGE.

Let

\[l = \text{panel length of bottom chord} = GD \text{ or } DB \text{ in the accompanying diagram}, \]
\[c = \text{half increase of panel length in top chord}, \]
\[d = \text{depth of truss between centres of chords} = AB, \]
\[\alpha = \text{angle between radial line at panel point and perpendicular to lower chord}; \]

then

\[\alpha = \sin^{-1} \frac{c}{d}, \]

and

\[DE : c :: l : d, \]

or

\[DE = \frac{cl}{d}, \]

\[BG = 2GE = 2\sqrt{l^2 - \frac{c^2 l^2}{d^2}} = 2l\sqrt{\frac{d^2 - c^2}{d^2}}. \]

When the camber is small, \(BG \) can be taken equal to \(2GD \).

In triangle \(ABG \), \(AB \) and \(BG \) are known, also angle

\[ABG = 90^\circ + \alpha. \]