changing \(w \) to \(m \), we have for material in \(ab, \ldots \frac{2D^3}{v} m \). But

\[\delta^2 = h^2 + v^2, \text{ whence } \frac{2D^3}{v} m = \frac{2}{3} \left(\frac{h^2}{v} + v \right) M = \left(\frac{2h^2}{3v} + \frac{2v}{3} \right) M. \]

Again, \(ab' \) sustains \(\frac{1}{3} w \), with length \(= \sqrt{4h^2 + v^2} \), and by multiplying and changing as in case of \(ab \), we obtain material in \(ab', = \left(\frac{4h^2}{3v} + \frac{v}{3} \right) M \), which added to amount for \(ab \), gives \(\left(\frac{6h^2}{3v} + v \right) M \) for the two braces, and \(\left(\frac{4h^2}{3v} + 2v \right) M \) for the four.

The horizontal thrust of \(ab = \frac{1}{3} w \frac{h}{v} \) while that of \(ab' = \frac{1}{3} w \frac{2h}{v} \). Hence the horizontal thrust of \(ab \) and \(ab = \frac{1}{4} w \frac{h}{v} = \) tension of \(aa' \), and material for chord \(aa' \), equals \(3 \times \frac{1}{3} \frac{h}{v} M = \frac{4h^2}{v} M \). Tension of \(bc \) and \(b'd \), each, equals \(w \), and material for the two \(= 2v M \), which added to amount in \(aa' \), makes the whole tension material equal to \(\left(\frac{4h^2}{v} + 2v \right) M \), being the same co-efficient of \(M \) as was obtained for compression.

In truss Fig. 7, \(\ldots ab \) and \(a'b' \) \((= D = \sqrt{h^2 + v^2})\), evidently sustain each a weight equal to \(w \), and a stress \(= \sqrt{h^2 + v^2} w \). Whence, material \(= \left(\frac{h^2}{v} + v \right) M \) for each, and \(\left(\frac{2h^2}{v} + 2v \right) M \) for both, while \(bb' \), equal to \(h \), sustains compression equal to the horizontal thrust of \(ab \), equal to \(\frac{h}{v} w \), and requires material equal to \(\frac{h^2}{v} M \), making, with amount in braces \(ab \ a'b', \left(\frac{3h^2}{v} + 2v \right) M \).

Now we have just seen that the horizontal thrust of \(ab \), equal to the tension of chord \(aa' \), equals \(\frac{h}{v} w \), and the

* When \(v \) is used in the co-efficient of \(M \), then \(M \) represents the product of the stress, in terms of \(w \), by length according to any assumed unit, which may be equal to \(v \) or not.