whether gh sustains more than $3\frac{3}{2}w''$, so as to reduce the horizontal thrust of lk below that of \bar{y}.

With the truss fully loaded except at the point f, \bar{y} sustains vertically, $16w''$, whence jk, having the same horizontal thrust exerts a depressive force $= \frac{3}{2}16w'' = 10\frac{3}{2}w''$, at j, leaving a balance of $5\frac{1}{2}w''$, exerted by \bar{y} toward lifting the $7w''$ at g. Hence, only $1\frac{1}{2}w''$ remains as the weight sustained by gh. Therefore, the horizontal pull of ek, is not less than that of gh, the horizontal thrust of lk, is not less than that of \bar{y}, and its lifting power, not less than $5\frac{1}{2}w''$, and ek does not lift more than $3\frac{3}{2}w''$, nor as much as when f and g are without load, as determined by the process above explained.

XXXI. To determine the greatest stress to which dl is liable, let the weights at e, f and g be removed. Then the pressure at i, due to the weights at b, c and d, equals $6w''$, that is, $1w''$ for weight at b, $2w''$ for that at c, and $3w''$ for that at d. We therefore take jq'' on \bar{y} produced, to represent the thrust of \bar{y}, produced by $6w''$—draw $q'r''$ parallel with ji, and from $q''r''$ find ft'' (of course less than ft'), and having taken kv' on jk produced, equal to jv'', raise the perpendicular $vx' = ft''$, and draw $x'y'$ parallel with ek. Then, $x'y'$ represents the tension of ek, from which we find ea'', representing the vertical thrust of el at its maximum. Also ky' represents the thrust of kl; and, having taken ld' on kl produced, equal to ky', raise the vertical de', equal to ea'' from e', draw ef'', parallel with dl, and meeting lm (produced, if necessary), in f', and ef'' represents the tension of dl.

We have a short way of verifying the correctness or otherwise of the last result, since we know that, in the state of the load here assumed, $6w''$, is transferred from