Take $b'o' = l'm'$, and draw the horizontal $o'r'$, then $b'r'$ represents the tension of bn, and om', the thrust of on. Take $na'' = om'$, on on produced, draw $ab = bp'$, parallel with bn, and, from b', let fall $b'c'$, representing the weight ($=7w''$) at c, and the part below nm, represents the lift of cm, whence we derive the tension of em. The result should be the same as that obtained by the former operation.

XXXIV. If the point b only, be loaded, we may take ok'' to represent the thrust of ao resulting from a pressure of $6w''$ at a, let fall $k''l''$ cutting on in m'', to represent the $7w''$ at b, and $m''l''$ represents the vertical lift of bn. Make $b'o'' = m''l''$, and draw the horizontal $o''r''$, and we have bp'' representing the tension of bn. This is the maximum stress of bn, since bn, can only sustain the weight at b, less the excess of lifting power of ao over the depressing power of on, both having the same horizontal thrust; which excess is represented by $k'm'$ and $k''m''$, and is least when the weight bearing at a is least. But the bearing at a (and the lift of ao), can never be less than $\frac{1}{3}$ of the weight at b, and $k''m'$ etc., can never represent less than $\frac{1}{3}$ weight at b, or $\frac{1}{3}$ of the lift of ao, whence $m''l''$ etc., can never represent more than $\frac{1}{3}$ weight at b; consequently bn can never sustain a weight greater than $5w''$ which is the amount represented by $m''l''$ when b is fully loaded, and the remainder of the truss without load.

XXXV. With regard to cm, no simple and conclusive reason presents itself, why the result above obtained for the stress of that member when b and c alone are loaded, is the actual maximum. But, as the assumed condition is precisely analogous, as far as the