mitted through fq to ds. If this be so, then fm and ei do not sustain the full weight of lw, but only $7w''$, which, being transmitted to il, makes, with the weight $w (= 9w'')$, applied directly at i, $16w''$, as indicated by the figures over the diagram, instead of $2w (= 18w'')$, as the figure 2 under the point i would indicate.

Now, whether the two diagonals en and fq, being apparently, in a state of partial antagonism, do in whole or in part neutralize the tendency of each other to transmit weight past the centre each way under a uniform load of the truss, is not quite obvious, and it may be proper to estimate stresses under both hypotheses, and take the highest estimate for each part of the truss.

It will be seen that il and es are the only diagonals in Fig. 20, which show greater stress with a full than a partial load, upon the non-decussation hypothesis. But all the diagonals undergo different stresses, with the uniform load, as viewed under the different theories, and consequently, their effects upon the chords are different. The end brace as, sustains $4(w + w') = 4W$ substituting W for $w + w'$, under either theory, and the tension of ae equals $4w^h$ (making $h = ab$, and $v = bs$). es sustains $2W$, or $\frac{1}{9}W$, whence cd sustains either $6W_v^h$ or $5\frac{3}{5}W_v^h$. Again, ds sustains W, or $1\frac{3}{5}W$, the former without, and the latter with decussion. This diagonal having a horizontal reach of $2h$, adds $2W_v^h$ or $2\frac{3}{5}W_v^h$ to tension of chord, making $8W_v^h$ or $8\frac{3}{5}W_v^h$, as the tension of de. For er, we have W without decussion, making a tension of $10W_v^h$ for ef; while with decussion, er sustains $\frac{3}{5}W$, from which we subtract $\frac{2}{5}W$, for opposite action of e, leaving $\frac{1}{5}W$.