their number; the actual amount depending somewhat upon the number, and not deducible by a general rule.

We shall not, however, err greatly in assuming, that with an inclination of 45°, for thrust diagonals in conjunction with tension verticals, the loss upon the former is quite made up by saving in the latter, and that a less inclination in this case, should be regarded as very questionable practice.

In case of tension diagonals and vertical struts, a saving in material may undoubtedly be made by making the horizontal greater than the vertical reach of the diagonal, whenever such a course is found consistent with a proper regard to just proportions of the truss in other respects; such as width of panel, depth of truss, etc.

THE WIDTH OF PANEL.

LXVIII. Which we have represented in our formulae by \(h \), has only been hitherto considered as to its relations to \(v \), representing the depth of truss.

With regard to the best absolute value of \(h \), the question is affected by the relative expense of floor joists, and the extra amount of material and labor in forming connections at the nodes of the chords; as well as, in some cases, the lengths of sections in the upper chord. The latter requires support laterally and vertically at intervals of moderate length, depending upon the absolute stress, which, other things the same, governs the cross-section.

The upper chord usually, of whatever material, has a cross-section so large as to exclude all danger of breaking by lateral deflection, in sections of 10 to 14 feet; and, as there will seldom be occasion for exceeding these lengths in canceled trusses, the increased