connecting blocks, and outside of the ends pointing toward abutments, and, the members of each pair of links being parallel with one another. [D, Fig. 27.]

The connecting block has an oblong section where it receives the links, being rounded on the sides to fit the semicircular ends of links. There should be an accurate fit between these parts, to effect which, perhaps, the best plan is to ream the ends of links, and turn the bearings of blocks to a uniform size. For this purpose, the block is cast with extra metal to be turned off at the bearings, and with the portion between bearings a little thinner vertically, than the turned portions, as shown in Fig. 30A, in which a is a section and bb are the bearing surfaces.

The vertical thickness of the block where it receives the links, should be at least 1 1/2 times the diameter of the link iron, and the cross-section multiplied by the width of block, and divided by diameter of link iron, should give a quotient about 13 times as great as the cross-section of both sides of the link.

The middle portion of the block is cast with the proper size and form for the upright and diagonal members to pass through in the required directions, and is provided with suitable facets for the bearings of nuts. The least cross-section through all or any of the holes, should be at least one-quarter greater than the section at the link bearings. In Fig. 30, a, b and c respectively represent a side, end and top view of the cast iron connecting block.

The oblong section of the connecting block was adopted to obtain greater transverse strength in the