of the truss. For any even number of panels, make a series of odd numbers, 1, 3, 5, &c., to a number of terms equal to half the number of panels; add the terms of the series, and divide the required cambre by the sum, and the quotient equals the required eccentricity to give the proper bevel.

For an odd number of panels, take as many even numbers 2, 4, 6, &c., as equal half the greatest even number of panels; add the terms and divide as before for the eccentricity. For illustration, for 8 panels, the four odd numbers $1 + 3 + 5 + 7 = 16$, whence the eccentricity should be $\frac{1}{8}$ of the cambre, as above stated. For 7 panel truss the three even numbers $2 + 4 + 6 = 12$. Hence the eccentricity should be $\frac{1}{2}$ of the cambre. The reason for this rule will be obvious without more particular demonstration.

At the obtuse angles of the truss, a hollow elbow is inserted (g, Fig. 35), reaching about 10 inches each way from the angular point, at the centre of the connecting pin, with an opening in the under side for upright and diagonals to enter, where they are fastened by a pin or bolt, as at the intermediate joints; the cylinders meeting the elbow, being shortened by as much as the elbow extends from the angle, either way.

The vertical member connecting with the elbow, is exposed to tension only, sustaining a weight equal to the gross panel load of the truss. It may be composed of two wrought iron suspension rods, united in a single eye at the top, and diverging downward to a connection with the beam and connecting block; or, it may be of cast iron, like the intermediates, with wrought iron eye plates, in place of the cast iron flanges with concaves as seen at e. These should be fastened by efficient means to the cast iron part of the upright; which lat-