For a 16 panel truss, as arranged in Figures 18 and 19. Suppose \(w = 12m \) (\(m \) representing 1,000 lbs); \(w' = 4m \), and \(W = 16m, = w + w' \); — diagonals (except the steep ones), inclining 45°.

The end brace, then, sustaining \(7\frac{1}{2}W = 120m \), produces tension equal to 60\(m \), upon the first and second section of chord, in Fig. 18, the proportions for which will be here considered. Allowing then, 10\(m \) to the square inch, each half chord requires a plate of about 8" by \(\frac{7}{8}" \), up to the second node from the end.

This plate may extend — say within 8" of the centre of the connecting pin at the 2d node, where it may be connected with a \(\frac{3}{8}" \) plate, by two splice-plates about 27" long (see A, Fig. 45), with a net section equal to the \(\frac{7}{8}" \) plate, or, say \(\frac{1}{4}" \) thick. Fig. 45, exhibits a disposition of rivet and pin holes, at A, so arranged as to preserve the full section of plates, less the diameter of a single 1" rivet hole.

Or, the splice-plates may be 7" shorter, and \(\frac{1}{4} " \) thicker, and the two rivets next the joint (\(j \)), on either side, opposite one another, as at BB, Fig. 45; thus giving the same section (of splice-plates), through two opposite rivets in the thicker, as through one rivet in thinner and longer splice plates. In this case, the joint should be 4\(\frac{1}{4} " \) from centre of connecting pin (\(p \)), and a little more, when the rivets exceed 1" in diameter.

At the third node, an increase of section is required, and a \(\frac{3}{8} " \) plate may be added on the inside, lapping 9 or 10 inches back of the pin, with a \(\frac{1}{4} " \) splice plate of the B pattern to balance the extra inch in width required for opposite rivet holes, and a 2" pin hole.

The inside plate continuing past the next, or 4th node, the \(\frac{3}{8} " \) outside plate may be met by, and spliced to a \(\frac{5}{8} " \) plate, in either of the modes indicated by A and