through the upright, from members of the other classes, meeting at the point p.

The material required for all the obliques, then, \((ab\) being = 1, and \(bc = h)\), is \(8 \times \frac{1}{2} (h^2 + 1) + 4 \times 1 (4h^2 + 1) + 2 \times 2 (16h^2 + 1) M \), being the number of pieces in each class multiplied by co-efficients of \(W \) in weights sustained, and by squares of length respectively, and the sum of products multiplied by \(M \).

Substituting in the above expression the value of \(h^2 \), (0.694), and, reducing and adding terms, we derive material in obliques = 70.296 \(M \).

Fig. 48.

Finck Truss.

The compression upon the chord \(al \), is equal to the horizontal action of one member of each class of obliques, communicated at each end; that is, equal to \((\frac{1}{2} h + 2h + 8h) W = 10\frac{1}{2} h W \); and, multiplying by length (= 6.66), and substituting 0.833 for \(h \), and \(M \) for \(W \), we have \((10.5 \times 0.833 \times 6.66) M = 58.\frac{1}{2} M \), to represent the material required in \(al \); — the same as in case of Fig. 47.

The uprights of the Finck truss obviously sustain 12\(W \), namely, 3\(\frac{1}{2} \) at each end, 3 in the middle, and 1 at each of the quarterings, \(r \) and \(n \). But, in comparing this with the Bollman truss, it seems fair to offset 6 uprights, not including the end and centre ones, in the Finck, against 7 in the Bollman truss not estimated; thus leaving 10\(M \) for uprights in the former, making...