$\frac{15 \times 7.500}{1,000 \times 12} = 96.4 \text{ square inches;} \text{ which divided by depth (d), in inches, gives thickness } (t), = 7 \text{ inches nearly.}$

Or the formula $t = \frac{2W}{1,000da}$ gives the required thickness directly. But in this case, l and d must express length and depth in inches, since the co-efficient of d (1,000) refers to square inches of section. Otherwise, the co-efficient must be multiplied by 144 to make it refer to the square foot of section; in which latter case the value of t will be obtained in feet.

In the case of beams to sustain rail road track, we may let $l' = \text{length of beam exclusive of the portion between rails, and } W = \text{weight upon the 2 rails. If } l' = 120'' \text{ and } W = 25,000\text{lbs.}, \text{ and } d = 14'' \text{ the above formula becomes, } t = \frac{120 \times 25,000}{1,000 \times 14^2} = \frac{3,000,000}{196,000} = 15.3 \text{ in.}$

Three Panel Truss.

CLIX. A three panel truss bridge of wood may be constructed upon the plan shown in outline by Fig. 7. The main braces ab and $a'b'$ may connect with the chord in the same manner as in the two panel truss described in the last section, and illustrated by Fig. 60; while the upper end may be square, and the whole bevel to form the angle abb', given to the member bb'. Or, the bevel may be upon both members; in which case the saddle plates at b and b' should extend over the joint, so as to throw a part of the weight directly upon the brace. In case the bevel be all upon bb', the saddle need not bear upon the brace.

The counter braces in the middle panel may box into the chord and the horizontal bb', in the manner shown in Fig. 62, either by the black or the dotted lines; the upper end of the counter toeing against the