Two plans have been employed for meeting these conditions; one of which is the use of parallel chord trusses, with the upper chord to sustain tension with occasional compression upon the end portions, and the lower chord to sustain compression, with occasional tension upon parts toward the ends.

CLXIX. The other plan is, the construction of trusses (ab Fig. 71), from the turn table T, to either end, acting upon one another by compression at the lower chord through or over the turn table, and sustained at the outer ends by oblique suspension rods or cables, eb and fd, descending from tower frames erected over the turn table.

![Fig. 71.]

The trusses may be constructed upon any plan suitable for a stationary bridge of like span. But the lower chord must be capable of sustaining compressive action in the direction of its length, equal to the excess of horizontal force of suspension rods eb and fd, over the tension of respective parts of said lower chord, due to weight of structure.

The horizontal action of eb, equals half the weight of the long arm ab, multiplied by \(\frac{eb}{cg} \), and it is advisable that the chord gb be able to sustain that amount of