FROM THE
American Railroad Journal,
January 28th, 1871.

The Newark Bay Pivot Draw Bridge.
By Mr. C., Editor American Railroad Journal:

Dear Sir:—In my article of the 16th inst., criti-
cising the Criticism of Mr. T. C. Clarke, I did not
allude to the breaking of the Newark Bay Pivot
Draw Bridge, feeling conscious that no one ac-
quainted with the circumstances would attribute
it to a fault in its construction. The unfair ali-
sion to it, however, by Mr. Clarke, renders it
necessary for me to do so.

Reaching the scene of the disaster very soon
after it occurred, I will state what I believe to
have been the cause, which is as follows:

The track rails, in the long line of pile treating
approaching the Draw had contracted (from the
very cold weather) so as to leave a space of three
or more inches between it and the end of the
bridge, and, as a consequence, the locomotive
being driven at a reckless rate of speed (which
was demonstrated by the effects produced), its
track wheels first sunk in the depression caused
by the three inch space, and then jumped forward
the lengths of the left ones allighting on the
top of the rails and, after passing on some six
or eight feet turned to the left, running off of the
eight feet of the shorter cross ties, (between the
ends and central part of the bridge the cross ties are
but eight feet long, with the exception of one
long one for each panel; the panels being about
18 ft. long,) jumped several spaces of about 18 ft.,
in the clear, each, breaking all of the long cross
ties in its course, when it knocked a post out of
the centretrusts; the right wheel, in the mean-
time, breaking off the shaft of the pinion of the
turning motor.

Some part of the locomotive next
contact in contact with the cap of the pivot, which
weighs some 1,700 lbs., making an indentation in
it about 3/16th inches long, and from 3/4 to 3/4 of
an inch deep, after which it is supposed the
engine plunged into the centretrusts, causing that
part of the structure to buckle and go down with
the locomotive.

The plunging of the engine truck
must necessarily have jerked back the lock bolts
of the Draw, and the last blow of the locomotive,
doubtless, knocked the ends some few inches out
of line, in which condition it is said to have been
found.

On my arrival at the bridge the East end
was resting on the East abutment, the part near
the pier though submerged, being still held in
position by the counter-diagonal-suspension-bolts.
The Western half of the bridge was yet in posi-
tion, and, although minus a post, a platform car
heavily loaded with lumber was safely pushed
over it.

Owing to the grade line of the railroad being
located so very near the surface of the water, the
bridge has frequently been endangered.
On one occasion a schooner was run into it at the rate of
8 or 9 knots an hour. It was, of course, consid-
erably injured on the one side; but in about
one hour, the opposite track was made passable for
the trains. The schooner, however, fared worse,
the bowsprit and forecast being broken short off
even with the hull, and a clean sweep made back
to the main mast. At the point of fracture the
bowsprit measured 16x18 inches square, and the
foremast 18 inches in diameter (it was 8 sided)
and both of good sound pine timber.

On another occasion, when the “Communipaw,”
one of the largest ferry boats in New York harbor
was passing by, it struck and made a short
bend in one of the main-suspension-diagonal
bolts, giving it a set from which it did not recov-
e; the tensile strain on the rod at the time being
full 40,000 lbs.

The very short space of time (only two weeks)
for which R. H. Rierson, Esq., the Superintendent
the railroad, was enabled to get the bridge in
running order again, notwithstanding the exceed-
ing cold weather of the time, and the very exposed
situation, was truly extraordinary, and reflects
great credit upon his untiring energy.

It is impossible for any iron truss bridge to
stand such a blow. If such a force were applied to
the outside of a bridge of 200 ft., or 300 ft. span,
it would knock it entirely off its bearings. On
one occasion I was present when a locomotive
collided with the rear end of a coal train, knock-
ing 12 heavily loaded cars off the track. What
folly, then, for a man to talk of sletermin coastal
trains, already under a heavy compressive strain, resisting force. No; our only safety
consists in having our buildings made abundantly
strong for sustaining the moving load, and care of
the track rails well guarded with additional
rails spiked inside, similar to the manner in which
the safety switches and frogs are protected, at
also the short curves of street railways.

Indeed I think our first class railroad compa-
nies would be the gainer if they would also have
such guards placed in all lines of trestle work,
and high and steep embankments. A guard tim-
ber at two feet or so from the rail can be of little
use, for if the wheels once leave the track, there
is no knowing where the trucks may cause the
locomotives or cars to plunge.

Guard rails, of the kind I have suggested as
being the most efficient, were placed upon an iron
bridge I erected several years ago for the Central
Railroad Co. of New Jersey, over Middle Brook.
On one occasion Col. James Moore, Chief En-
geineer, informed me that as a train of loaded coal
cars were rapidly approaching the bridge, one
of them got off of the track, but one of the guard
rails drew the wheels of the car in, and confined
them close to the track, so that the guard
rails drew the wheels of the car in, and confined
them close to the track, enabling it to pass safely
over the bridge, after which the coupling brake
and the car fell off. I know of no other bridge
at the present time, which is guarded in a similar
manner.

That Mr. Clarke has had some unusual advan-
tage for obtaining valuable information relative
to the construction of iron bridges, I am well
aware. Of the following resources Engineers and
Builders do not generally avail themselves. Sev-
eral parties, myself among the number, were
invited to prepare plans, and to offer bids for the
construction of the Quincy Bridge. Having so
prepared myself, the appointed time found us
on our way to Quincy, where I soon met with
other parties who had come for the same purpose.
On the morning following our arrival we called
at the office of the Engineer; upon being intro-
duced to Mr. C., made known our business, and after
some conversation, left in his charge our plans
and bids, as also all bills of materials, etc., for
the purpose of enabling him to examine and re-
port to the Directors or Executive Committee his
opinion regarding their respective merits.

Day after day we looked for that committee,
but they did not make their appearance until the
seventh day, and after delaying us two days
longer (for the purpose, I suppose, of enabling
Mr. C. and his assistant to copy all he could desire
from detail drawings, diagrams of spans, bills of
materials, etc.), we were informed that they
would not decide at present, but would let us know
by mail to whom the contract would be assigned.

Some months subsequently I met one of my
competitors, and upon inquiring who received the
contract, received this reply: “No one; it is being
made at the "Detroit Bridge and Iron Works,"
(in which, we were told, one or more of the
Quincy Bridge directors were heavily interested,
and of which Charles Kellogg, of the late "reli-
able firm" of Kellogg, Clarke & Co., was Superin-
tendent). On asking whose plan had been adopt-
ed, the reply was, in substance, “I presume it is
one furnished by Mr. Clarke, which he has been
enabled to get up from the various plans we (the
bidders) furnished for his inspection.”

It seems very strange that Mr. C. should, in
publishing such a voluminous description of the
Quincy Bridge as he did, have failed to describe
by sectional drawings, etc., such an important
part as the Post, and Pedestal on which it turns;
as is always customary in works of the kind.

Such being at least one of the instances, to my
knowledge of Mr. C.’s gaining valuable information,
I charge him with ingratitude in making the
statement he did, without knowledge of the facts,
in regard to the Newark Bay Bridge disaster. I
say ingratitude, because the information he
received from myself alone, which cost me much
labor and expense, and for which I received not
even thanks, entitled me to, at least, a correct,
and not a suppressed statement. There were no
bridges under the ends of the Newark Bay Draw,
but simply rollers, and the same were firmly
secured with strong lock bolts in a manner similar
to the Pivot Bridge of the Pennsylvania Railroad
Co., over the Schuylkill at Philadelphia.

As there ought always, practically speaking, to
be a space of from 3/4 to 3/4 of an inch at the
shifting ends of all switches, turn tables and Pivot
Bridges, there must of necessity occur some slight
jar from passing trains.

Had Mr. C. not made an error in his calcula-
tions, the ends of his Quincy bridge would not
have sunk so very much below the level of the
track of the fixed spans as to require the use of
“powerful cauls” which he says “My firm”
are using to make further improvements in, for
the Hudson River Bridge. A more simple
arrangement ought to have answered for any slight
depression.

I regret being obliged to allude to the Quincy
Bridge, but as Mr. C. has seen fit to bring it be-
to the public in the manner he has, I consider
it only justice to others as well as to myself,
to state a few of the facts in regard to it, which he
had omitted.

Hoping I have not trespassed too much upon
your time and space, I remain very respectfully,

F. C. LOWTHORP.