wards, will be opposed by the weight upon \(x \) acting downward, and the difference of the moments will represent the strain.

For the first we have \(\frac{w}{3} \cdot x = \frac{wx}{3} \) = moment of force \(\frac{1}{3} w \).

For the second we have, since the weights will be as the square of the lengths, \(l^2 : x^2 :: w : \frac{wx^2}{l^2} \) = weight on \(x \). As the leverage is \(\frac{x}{3} \cdot \frac{wx^2}{l^2} \cdot \frac{1}{3} x = \frac{wx}{3 \cdot l^2} \) = moment of the weight on \(x \).

The difference will be \(\left(\frac{wx}{3} - \frac{wx^3}{3 \cdot l^2} \right) \) = strain on section.

By the principles of maxima and minima we have

\[
\left(\frac{w}{3} - \frac{wx^2}{l^2} \right) = 0. \quad x^2 = \frac{l^2}{3}. \quad x = l \sqrt{\frac{1}{3}}. *
\]

Prop. 20. To determine the extension of the fibres when a beam is supported at the ends and loaded in the middle.

A beam supported at the ends and loaded in the middle is in the same condition as a beam resting upon a fulcrum in the middle and loaded with equal weights at the ends.

Fig. 37.

Let \(l = \) one-half the whole length

\(w = \) the weight on \(A \)

\(e = \) the maximum extension, which will be at \(C \).

Now, as the extension at any distance is in proportion to the strain, it will evidently be in proportion to \(x \); and we have therefore, \(l : x :: e : \frac{ex}{l} \) = extension at the distance \(x \).

* Tredgold gives it \(\sqrt{\frac{1}{3}} l \).