which \(l \) represents the length, and \(d \) the depth.) The same force is transmitted to \(B \). We can also determine this horizontal force, by the condition that it shall keep the part \(w e \) in equilibrio. Regarding \(w \) as a fulcrum, and the weight at \(B = \frac{1}{2} w \), the moment of this force will be \(\frac{1}{2} w \times \frac{1}{2} l = \frac{w l}{4} \). The moment of the horizontal force, acting with a leverage \(d \), will be \(H d \), and \(H = \frac{w l}{4d} \) as before.

We will now consider the action of these forces at another point (\(S \)), the weight, as before, being applied entirely at the middle point of the beam.

1. **Horizontal strain at \(S \).**

Since the weight \(w \) is equally supported by each of the points \(A \) and \(B \), we may continue to consider \((w) \) as a fulcrum, and, that forces \((\frac{1}{2} w) \), acting upwards at \(A \) and \(B \), maintain the equilibrium.

The portions (\(A n \)) and (\(n B \)) will be in the condition of beams fixed at one end, and loaded at the other.

The weight \(\frac{1}{2} w \) applied at \(B \), acting with a leverage \(u = S \)

\(C \) produces an effect equal to the product \(\frac{w}{2} \times u \), and the horizontal strain at \(S \) acting with a leverage \(d \) has for its moment \(H \times d \). Hence, \(H d = \frac{wu}{2} \) or \(H = \frac{u w}{2d} \), which becomes when \((u = \frac{l}{2}) \), \(w = \frac{l w}{4d} \), as before.

The horizontal strain in the middle of the beam is to the same strain at any other point as \(\frac{l}{2} : u \), and consequently varies with the perpendiculars of a triangle constructed on \(\frac{l}{2} \) as a base.

2. **Vertical force at any point.**

The horizontal at \(S \) was found to be \(\frac{u w}{2d} \), but it is evident,