Static Load per linear ft. each Truss 850 lbs = \(\theta \)

Variable Rolling \(\cdots \) \(\cdots \) \(\cdots \) \(\cdots \) \(2250 \text{ lbs} = \theta' \)

Concentrated \(\cdots \) \(\cdots \) \(\cdots \) \(\cdots \) \(3375 \text{ lbs} = \theta'' \)

\(\theta = \) Angle made by short diagonals with vertical

\(\theta' = \) \(\cdots \) \(\cdots \) \(\cdots \) \(\cdots \) \(\text{ long} \)

See \(\theta = 1.13 \), Tang \(\theta = 0.517 \)

See \(\theta' = 1.44 \), Tang \(\theta' = 1.03 \)

Panel Live load = \(850 \times 12\frac{1}{2} = 10625 \text{ lbs} \)

\(\cdots \) Variable Rolling \(\cdots \) = \(2250 \times 12\frac{1}{2} = 28125 \text{ lbs} \)

\(\cdots \) Concentrated \(\cdots \) = \(3375 \times 12\frac{1}{2} = 42187.5 \text{ lbs} \)

Height of Trusses = 24 ft 2 in.

Length of inclined end piece = 27 ft 2 in.

I shall first calculate the strains in the diagonals due to the three loads acting...