the New York market is sent in bulk to this establishment, where it is packed in barrels.

To the Coplay Cement Company is due the credit of having first introduced into this country the manufacturing of Portland cement on a large scale. Their peculiar advantageous position, in having inexhaustible stores of the raw material in its cheapest and simplest conditions, coupled with the advantages of shipment by rail and water, enables them to supply the article in abundance to all parts of the country at a comparatively low price. The Portland cement is recommended by the most prominent architects and engineers, and the trade generally, to be fully equal to the best foreign brands. It is of uniform quality and always reliable. Capt. J. B. Eads, the distinguished engineer, used Saylor's Portland Cement exclusively on the jetty works of the Mississippi, at New Orleans, having used upwards of thirteen thousand barrels up to this time, and recommends it highly. It is used in the river and harbor improvements and fortifications on the South Atlantic coast, fortifications on Staten Island and New York Harbor, under the superintendency and management of Gen. Gillmore, who prefers it to all others. In the Centennial Exhibition there were fourteen Portland cements, all of which were tested under Gen. Gillmore's direction, and Saylor's cement stood among the best.

The Jacksonburg argillaceous limestone is used in the cement plants of the region. At times some Beekmantown low-magnesian limestone has been mixed with the argillaceous limestone to increase the CaCO_3. In most cases, however, very pure limestone from the Lebanon Valley is used to make up this deficiency.

JACKSONBURG LIMESTONE

The most impure limestones of the county and yet the most valuable constitute the Jacksonburg formation. The Jacksonburg strata in this region consist of a basal member of crystalline high-grade limestone designated "cement limestone," and an upper argillaceous limestone member that comprises most of the formation and is called "cement rock." In some places the two are sufficiently distinct to permit separate mapping but elsewhere they grade into each other and everywhere occasional layers of the basal type are interbedded within the more argillaceous upper member.

In most places in the region the northern boundary of the cement rock can be accurately determined by an abrupt change in topography, the line of contact being at the base of the steep slopes that mark the southern margin of the slate belt. This change in slope is due to the relative ease with which the cement rock is removed by weathering, mainly solution, in comparison with the much less soluble slate.

In several places the southern boundary of the cement rock belt is also marked by a change in slope. The underlying limestone is more soluble than the cement rock, and produces more nearly level land.

"Cement limestone."—The typical cement limestone of the region is a light to dark gray, coarsely crystalline limestone which, when freshly broken, shows lustrous surfaces of dark calcite. Less commonly it is a dark-colored limestone closely resembling in appearance the underlying dolomitic limestones. It is usually massively bedded.

Normally the cement limestone runs high in CaCO_3 and low in MgCO_3, but it varies greatly in composition. In some quarries considerable rock is obtained in which analyses show from 90 to 95 per-