Professor E. H. Williams, Jr. has reported the finding of nuggets of native copper in some of the glacial deposits east of Hellertown. He thought that they came from the copper district of Michigan by way of the Mohawk and Hudson River Valleys. The author is more inclined to think that they came from some of the trap rocks of Northern New Jersey.

SULPHIDES

MOLYBDENITE \((MoS_2)\)

Specimens of molybdenite in thin plates along joint planes have been found in the pre-Cambrian rocks of Chestnut Hill and in some loose masses of Byram gneiss about 1\(\frac{1}{2}\) miles east of Hellertown.

GALENA \((PbS)\)

Occasional small pieces of galena associated with sphalerite have been found in calcite and dolomite veins traversing the serpentine in Chestnut Hill. It has also been noted in the basal Shawangunk conglomeratic sandstones of Lehigh Gap.

CHALCOCITE \((CuS)\)

Chalcocite has been reported from Chestnut Hill. It is also said to occur in the Triassic rocks that contain malachite and may well be present there although the writer has not observed it. The malachite has doubtless resulted from the oxidation of the chalcocite.

SPHALERITE \((ZnS)\)

Sphalerite has been found by the writer in small particles associated with galene in calcite and dolomite veins in the serpentine rocks of Chestnut Hill. It is fairly clear and of a light resinous color.

CHALCOPYRITE \((CuFeS_2)\)

Chalcopyrite has been reported from the serpentines of Chestnut Hill.

PYRITE \((FeS_2)\)

Pyrite is a common mineral in Northampton County. In places it is a rather abundant constituent of the gneisses. Recently specimens of Byram gneiss have been brought to the writer from east of Shimer'sville in which it is well distributed through the normal gneiss and in the pegmatites cutting the gneiss. It occurs almost everywhere in the Hardyston quartzite and by oxidation makes the limonitic stains that render the stone particularly pleasing in color for both residences and public buildings. In the compact quartzite the oxidation has extended inward from the bedding and joint planes less than an inch, but in the more porous beds the pyrite has changed to limonite throughout, even though the layers be six inches or more in thickness.