Nicolai Copernici

in e, erunt basis segmenta ABCDAE, sicut BC ad AB, & quoniam maior est BCU quam AB, maior etiam BC quam EA, agatur DF per pendicularis ipsi AC, quae secabit ipsam AC bifariam in F signo, quod necessarium est in BC maior segmento inueniri. Et quoniam omnis trianguli, maior angulus ad maiorem laterem subtenditur, in triangulo DEF, latus DE maior est ipsi DF, & adhuc AD maius est ipsi DE, quaepropter D centro, intervallo autem DE, descripta circumferentia, AD secabit, & DF transibit. Secretigitur AD in H, & extendatur in rectam lineam DF. Quoniam igitur sector DE in maius triangulo EDF, trianguli uero DFB maius DEH sectori. Trianguli igitur DEF, ad DFB trianguli, minor habet rationem quam DFB a sectori ad DEH sectorem. Atque igitur in circuli circumferentia sunt angulis qui in centro triangula uero qua sub eodem uestice basibus suis sunt proporcionalia, Idcirco major ratio angulorum EDF ad ADE, quam basii EF ad AE. Igitur & conjunctim angulus FDA, maior est ad ADE, quam AFD ad AE. Accedem modo CDA ad ADB, quam AC ad AE. Ac duidem maior est etiam CDE ad EDA, quam CDB ad EA. Sunt autem ipsi anguli CDB ad EDA, UCB circumferentia ad A B circumferentiam. Basis autem CE ad AE, sicut CE subtensae ad AB subtensam. Est igitur ratio maior CB circumferentiae ad AB circumferentiam, quam BC subtensae ad AB subtensam, quod erat demonstrandum.

Problema.

At quoniam circumferentia recta sibi subtensa semper maior existit, cum sit recta breuiissima earum quae terminos habent eodem. Ipsa tamen inaequalitas, ad maioribus ad minoribus circuli sectiones ad aequalitatem tendit, ut tandem ad extremum circuli contactum recta & ambicio sa simul excerta. Oportet igitur, ut ante illud abscep, manso festo discrimine inuicem different. Sit enim uerbi gratia AB circumferentia gradus III. & AC gradus I. s. AB subtendens demonstrata est partium 5235, quarum dimetiens positae est 200000, & AC earundem partium 2618. Et cum dupla sit AB sit A B C