Project 279

Investigation of Composite Design
For
Buildings

Summary Report

Report Prepared by Charles Culver

Fritz Engineering Laboratory
Department of Civil Engineering
Lehigh University
Bethlehem, Pennsylvania

Fritz Laboratory Report No. 279.8
February 1960
TABLE OF CONTENTS

1. Introduction 1
2. Summary of Pertinent Dates 3
3. List of Specimens Tested 4
4. List of Reports and Publications 7
5. List of Test Data X-File 8
6. List of Supplementary Data and Calculations 9
7. List of Drawings 10
8. List of Slides and Photographs 16
9. List of Special Equipment 22
10. Budget and Expenditures 23
11. List of Personnel 24
1. **Introduction**

A proposal for a research program on composite beams for buildings was prepared by Dr. Bruno Thurlimann and submitted to the American Institute of Steel Construction on April 9, 1959. The research outlined in this proposal stemmed from several composite beam tests conducted by two senior Civil Engineering students at Lehigh University in the Fall of 1958 and supervised by Dr. Bruno Thurlimann.

The research proposed was to cover a period of two years with the main objective being to develop the best method of design for composite beams for buildings and to establish design values for the component parts of such composite beams.

The above mentioned research proposal was accepted by AISC and work on project 279, as it was to be called, began in June 1959. The initial stage of this project consisted of a literature survey of the material available on the subject and preparation of a proposal for a series of beam tests and pushout tests.

On November 4, 1959 a committee meeting was held at AISC Headquarters in New York and the test proposal approved. After partial completion of these tests a preliminary report was prepared and a committee meeting held on February 1, 1960 to discuss the results. In view of some of the test results further tests were proposed by the committee and it was agreed to incorporate these additional tests in the second series of tests.
Project supervision was transferred from Prof. Bruno Thurlimann to Prof. George C. Driscoll in March 1960 due to Professor Thurlimann's transfer from Lehigh University to the Swiss Federal Institute of Technology in Zurich, Switzerland.

The first series of tests was completed and a test report, Progress Report 1, submitted to the committee. The third committee meeting was held at Lehigh University on June 30, 1960. At this time, Progress Report 1 was discussed and a proposal for a second series of tests approved.

Upon completion of the second series of tests, Progress Report 2 was prepared. With the completion of these tests information was available covering all the problems initially put forth to be investigated in the initial proposal for this research program.

This summary report will cover all the material from the four beam tests up to and including Progress Report 2.
2. **Summary of Pertinent Dates**

2. Test Report

3. Proposal for Research Grant to AISC 4/9/59

4. Commencing of Project Work June 1959

5. Project Committee Meeting No. 1
 Submission of Proposal for First Series of Tests (Bl-B6, Fl-P6) 11/4/59

6. Beginning of Testing on First Series of Tests 1/6/60

7. Project Committee Meeting No. 2 2/1/60

8. Completion of Testing on First Series of Tests April 1960

9. Test Report

11. Project Committee Meeting No. 3 June 1960

12. Testing of Third Series of Tests

13. Test Report

3. List of Specimens Tested

Beam Specimens (354)

Beam 1 Provided with 1/2-in. diameter L-studs
Beam 2 Provided with 1/2-in. diameter L-studs
Beam 3 Provided with 1/2-in. diameter L-studs
Beam 4 Provided with 1/2-in. diameter L-studs (Fatigue Loading)
3. List of Specimens Tested (cont.)

Beam Specimens (279)

Beam B1 No mechanical shear connection, Tie Rods provided to prevent bond breakage prior to testing, Hanging loads

Beam B2 No mechanical shear connection, Tie Rods provided to prevent bond breakage prior to testing, Top loading

Beam B3 Provided with 1/2-in. diameter L-studs, Top loading

Beam B4 Provided with 1/2-in. diameter L-studs, Hanging loads

Beam B5 Provided with channel sections as shear connectors

Beam B6 Under reinforced shear connection, using 1/2-in. diameter L-studs

Beam B7 One-half-inch diameter L-studs used as mechanical shear connection

Beam B8 Shear connection provided in the form of 1/2-in. diameter headed studs

Beam B9 Three-quarter-inch diameter headed studs used for shear connection

Beam B10 Constant spacing of 1/2-in. L-studs used on a beam specimen subjected to loads producing a variable shear diagram

Beam B11 Constant spacing of 1/2-in. L-studs used on a beam specimen subjected to loads producing a variable shear diagram

Beam B12 Variable spacing of 1/2-in. L-studs used on a beam specimen subjected to loads producing a variable shear diagram

Beam B13 Thirty-foot continuous beam specimen with 1/2-in. L-studs
3. List of Specimens Tested (cont.)

Pushout Specimens (279)

<table>
<thead>
<tr>
<th>P1</th>
<th>One-half-inch L-studs</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>Channel shear connectors</td>
</tr>
<tr>
<td>P3</td>
<td>Three-quarter-inch headed studs</td>
</tr>
<tr>
<td>P4</td>
<td>One-half-inch L-studs</td>
</tr>
<tr>
<td>P5</td>
<td>One-half-inch headed studs</td>
</tr>
<tr>
<td>P6</td>
<td>One-half-inch headed studs</td>
</tr>
<tr>
<td>P7</td>
<td>One-half-inch L-studs</td>
</tr>
<tr>
<td>P8</td>
<td>One-half-inch headed studs</td>
</tr>
<tr>
<td>P9</td>
<td>Three-quarter-inch headed studs</td>
</tr>
</tbody>
</table>
4. **List of Reports and Publications**

1. Culver, C; Coston, R. "Tests of Composite Beams with Stud Shear Connectors", Fritz Laboratory Report 354.1 Apr. 1960 (Submitted to ASCE for publication in The Structural Journal)

2. Proposal for First Series of Tests Nov. 1959

5. Preliminary Test Report on Second Series of Tests (B7 - B9) (279.4) June 1960

6. Proposal for Third Series of Tests (279.5) June 1960

7. The Moment Curvature Relations For Composite Beams (279.7) Dec. 1960

11. Progress Report No. 3 (279.10) Nov. 1961

12. "Plastic Design of Steel and Concrete Composite Beams." Roger G. Slutter & George C. Driscoll, Jr. (279.11)

5. **List of Test Data - X-File**

Accopress Binders

1. Test Data and Pictures - Beams 1 - 4 (354)
2. Test Data - Beams B1 - B6 (279)
3. Test Data - Beams B7 - B13 (279)
6. List of Supplementary Data and Calculations

1. Supplementary Data (279)
 A. Coupon Tests
 B. Concrete Cylinder Tests
 C. Tests on Stud Material
 D. Data on Test Setups
 E. Dimensions of Steel Beams
 F. Work Orders

2. Supplementary Data (279)
 A. Stud Layout on Beams and Pushout Specimens
 B. Curve Plotting Data
 C. Budget Information
 D. Final Beam Calculations
 E. Design Calculations
 F. Pushout Test Data
 G. Pictures and Slides

3. Project Reports
 A. Culver, C.; Coston, R. "Tests of Composite Beams with Stud Shear Connectors"
 Fritz Laboratory Report 354.1
 B. Initial Proposal
 C. Proposal for First Series of Tests (279.1)
 D. Preliminary Report on First Series of Tests
 E. Progress Report 1 (279.2)
 F. Preliminary Test Results, B7-B8-B9 (279.4)
 G. Proposal for Third Series of Tests (279.5)
 H. Progress Report 2 (279.6)
 I. Summary Report (279.8)
7. List of Drawings

First Four Beam Tests (354)

354.1 Dimensions of Test Specimens
354.2 Load Deflection Curve B1-T1
354.3 Load Deflection Curve B2-T1
354.4 Load Deflection Curve B2-T2
354.5 Load Deflection Curve B3-T1
354.6 Load Deflection Curve B3-T2
354.7 Load Deflection Curve B3-T3
354.8 Load-Slip Curves
354.9 Table of Beam Test Results
354.10 Non-Dimensional Plot M/M_y
354.11 Use of VQ/I at Ultimate
354.12 Test Setup

Investigation of Composite Design for Buildings (279)

279.1 Dimensions of Beam Specimens
279.2 Details of Pushout Specimens, First Series of Tests
279.3 Test Setup - Top Loading
279.4 Test Setup - Hanging Loads
279.5 Gage Locations on Beam Specimens (B1 - B6)
279.7 Load Deflection Curve B1-S1
279.8 Load Deflection Curve B2-S1
279.9 Load Deflection Curve B3-S1
279.10 Load Deflection Curve B3-S2
279.11 Load Deflection Curve B3-S3
279.12 Load Deflection Curve B4-S1
279.13 Load Deflection Curve B4-S2
279.14 Load Deflection Curve B4-S4
259.15 Load Deflection Curve B5-S1
259.16 Load Deflection Curve B5-S2
259.17 Load Deflection Curve B5-S5
259.18 Load Deflection Curve B6-S1
279.19 Strain Distribution Across Slabs (B3, B4)
279.20 Typical Connector Failures (B1 - B6)
279.22 Separation of Slab and Beam (B1 - B6)
279.23 Slip Distribution B3
279.24 Slip Distribution B4
279.25 Slip Distribution B5
279.26 Slip Distribution B6
279.27a Non-Dimensional Plot of M/M_y (B1 - B6) First Test
279.27b Non-Dimensional Plot of M/M_y (B1 - B6) Second Test
279.27c Non-Dimensional Plot of M/M_y (B1 - B6) Final Test
279.28 Load-Slip Curve for P1
279.29 Load-Slip Curve for P2
279.30 Load-Slip Curve for P3
279.31 Load-Slip Curve for P4
279.32 Load-Slip Curve for P5
279.33 Load-Slip Curve for P6
279.34 Calculation of Connector Forces
279.35 Calculation of Shear Flow at \(M_p \)
279.36 Dimensions of Beam Specimens B7, B8, B9
279.37 Dimensions of Beam Specimens B10, B11, B12
279.38 Dimensions of Beam Specimens B13
279.39 Dimensions of Pushout Specimens
279.40 Test Setup for Beams B10, B11, B12
279.41 Test Setup for Beam B13
279.42 Typical Arrangement of Recording Gages for Beam Specimens
279.43 Load Deflection Curve for First Test of Beam B7 with 1/2" L-studs
279.44 Load Deflection Curve for Final Test of Beam B7 with 1/2" L-studs
279.45 Load Deflection Curve for First Test of Beam B8 with 1/2" Straight Studs
279.46 Load Deflection Curve for Second Test of Beam B8 with 1/2" Straight Studs
279.47 Load Deflection Curve for Final Test of Beam B8 with 1/2" Straight Studs
279.48 Load Deflection Curve for First Test of Beam B9 with 3/4" Straight Studs
279.49 Load Deflection Curve for Second Test of Beam B9 with 3/4" Straight Studs
279.50 Load Deflection Curve for Final Test of Beam B9 with 3/4" Straight Studs
279.51 Load Deflection Curve for Test of Beam B10 with Uniform Connector Spacing
279.52 Load Deflection Curve for Test of Beam B11 with Uniform Connector Spacing
279.53 Load Deflection Curve for Test of Beam B12 with Variable Connector Spacing
279.54 Load Deflection Curve for Test of Beam B13
279.55 Typical Strain Distribution Across Slab
279.56 Comparison of Beam and Pushout Connector Failures
279.57 Deformed Shape of Connectors After Failure
279.58 Separation of Slab and Beam
279.59 Separation of Slab and Beam
279.60 Slip Distribution Along Beam B7
279.61 Slip Distribution Along Beam B8
279.62 Slip Distribution Along Beam B9
279.63 Slip Distribution Along Beam B10
279.64 Slip Distribution Along Beams B11 and B12
279.65 Moment-Curvature Relations for Beam B13
279.66 Comparison of Beam Tests B7, B8, and B9 with First Load Spreading
279.67 Comparison of Beam Tests B7, B8, and B9, with Load Spreading Giving Balanced Shear and Moment
279.68 Comparison of Beam Tests B8 and B9 with Load Spreading Giving Excess Shear
279.69 Comparison of Beam Tests B10, B11, B12
279.70 Load Slip Curve for Pushout Specimen P7
279.71 Load Slip Curve for Pushout Specimen P8
279.72 Load Slip Curve for Pushout Specimen P9
279.73 Non-Dimensional Plot for Beam B12
279.74 The Design of Composite Beams
279.75 Problems Investigated
279.76 Summary of Beam Test Results
8. List of Slides and Photographs

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Project 279</th>
</tr>
</thead>
<tbody>
<tr>
<td>1**</td>
<td>Formwork for beam specimens</td>
</tr>
<tr>
<td>1A*</td>
<td>Formwork for beam specimens</td>
</tr>
<tr>
<td>2**</td>
<td>Formwork for beam specimens</td>
</tr>
<tr>
<td>2A*</td>
<td>Formwork for beam specimens</td>
</tr>
<tr>
<td>3**</td>
<td>Formwork for beam specimens</td>
</tr>
<tr>
<td>4**</td>
<td>Formwork for beam specimens</td>
</tr>
<tr>
<td>5</td>
<td>Beam 1, Prior to pouring slab (12-59-22)</td>
</tr>
<tr>
<td>6</td>
<td>Beam 2, Prior to pouring slab (12-59-17)</td>
</tr>
<tr>
<td>7</td>
<td>Beam 3, Prior to pouring slab (12-59-19)</td>
</tr>
<tr>
<td>8</td>
<td>Beam 4, Prior to pouring slab (12-59-18)</td>
</tr>
<tr>
<td>9</td>
<td>Beam 5, Prior to pouring slab (12-59-20)</td>
</tr>
<tr>
<td>10</td>
<td>Beam 6, Prior to pouring slab (12-59-16)</td>
</tr>
<tr>
<td>11</td>
<td>Close-up of lifting hook and studs, Beam 3 (12-59-15)</td>
</tr>
<tr>
<td>12</td>
<td>Close-up of lifting hook and channel section, Beam 5 (12-59-21)</td>
</tr>
<tr>
<td>13</td>
<td>All pushout specimens, showing connectors (12-59-4)</td>
</tr>
<tr>
<td>14</td>
<td>Formwork for pushout specimens (12-59-8)</td>
</tr>
<tr>
<td>15</td>
<td>Close-up of pushout specimens (12-59-10)</td>
</tr>
<tr>
<td>16</td>
<td>Pushout specimen with L-studs, prior to pouring slab (12-59-13)</td>
</tr>
<tr>
<td>17</td>
<td>Pushout specimen with channel, prior to pouring slab (12-59-14)</td>
</tr>
</tbody>
</table>

Number only - denotes both slide and photograph
* - denotes photograph only
** - denotes slide only
() - denotes Fritz Laboratory Number
8. List of Slides and Photographs (contd.)

Fig.

18. Pushout specimen with straight studs, prior to pouring slab (12-59-5)
19. Close-up of welded channel on pushout specimen (12-59-9)
20. Pushout specimen in testing machine (1-60-34)
21. P2, during testing (1-60-39)
22. P2, during testing (1-60-46)
23. Channel sections on P2 (1-60-32)
24. P2, after removal of slabs (1-60-42)
25. Close-up of channel on P2 (1-60-44)
26. Crushed concrete around studs, P1 (1-60-13)
27. P1, after removal of slab (1-60-14)
28. Crushed concrete around studs, P1 (1-60-16)
29. P1, after removal of slab (1-60-15)
30. Crushed concrete, slab; P2 (1-60-37)
31. Crushed concrete slab, P2 (1-60-38)
32. Crushed concrete around studs, P4 (1-60-54)
33. Deformed connectors and concrete, B3 (1-60-41)
34. Dial gages on beam (1-60-53)
35. Test set-up, B3 (1-60-11)
36**. Pouring of beam specimens
37. Deformed studs, B3 (1-60-36)
38. Cracked slab, top view, B3-T2 (1-60-35)
39**. Pouring of beam specimens
8. List of Slides and Photographs (contd.)

Fig. 40 Crunched concrete around studs, B3 (1-60-40)
Fig. 41* Cracked slab, B3
Fig. 42** Close-up of weld on channel, B5
Fig. 43 Uplift and separation at end of B3 (1-60-56)
Fig. 44 Dial gages on beam (1-60-55)
Fig. 45 Slab removed from B3 (1-60-45)
Fig. 46** B6 under load
Fig. 47 Top view of cracked slab B3 after testing (1-60-43)
Fig. 48 Close-up of channel on pushout specimen (12-59-2)
Fig. 49* Close-up of slip and crushed concrete in Slab B3 (1-60-30)
Fig. 50 B3 under load (1-60-31)
Fig. 51* B5 under load of 75k (1-60-60)
Fig. 52* Failure at end of slab of B5 (2-60-58)
Fig. 53 Close-up of B6 stud (1-60-66)
Fig. 54 Close-up of slab and studs, B6 (1-60-67)
Fig. 55 Slab of B6, after removal (1-60-64)
Fig. 56 Steel beam and concrete particles, B2 (2-60-78)
Fig. 57 Slab with concrete particles removed, B2 (same location as Fig. 56) (2-60-79)
Fig. 58 Overall test set-up (2-60-59)
Fig. 59 Overall view of slab of P3 (1-3) (1-60-59)
Fig. 60 Overall view of slab of P3 (2-4) (1-60-58)
Fig. 61 Close-up of P3, slab after removal from steel section (1-3) (1-60-68)
8. List of Slides and Photographs (contd.)

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>Close-up of P3, slab after removal from steel section (2-4)</td>
<td>1-60-62</td>
</tr>
<tr>
<td>63</td>
<td>Close-up of deformed stud remaining on P3, after failure</td>
<td>1-60-61</td>
</tr>
<tr>
<td>64</td>
<td>Close-up of slab of P5 (1-2)</td>
<td>1-60-63</td>
</tr>
<tr>
<td>65</td>
<td>Close-up of slab of P5 (3-4)</td>
<td>1-60-65</td>
</tr>
<tr>
<td>66</td>
<td>Close-up of slab of P6 (1-2)</td>
<td>1-60-57</td>
</tr>
<tr>
<td>67</td>
<td>Close-up of slab of P6 (3-4)</td>
<td>1-60-69</td>
</tr>
<tr>
<td>68</td>
<td>Close-up of tie-downs, hanging loads</td>
<td>3-60-31</td>
</tr>
<tr>
<td>69</td>
<td>Close-up of tie-downs, hanging loads</td>
<td>3-60-29</td>
</tr>
<tr>
<td>70</td>
<td>Test set-up, hanging loads</td>
<td>3-60-28</td>
</tr>
<tr>
<td>71</td>
<td>Beam 1, after removal of slab</td>
<td>3-60-30</td>
</tr>
<tr>
<td>72</td>
<td>Hanging-load set-up, B1, after removal of slab</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Hanging-load set-up</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Cracked slab and beam, B4-T3</td>
<td>4-60-18</td>
</tr>
<tr>
<td>75</td>
<td>Test set-up, B4-T3</td>
<td>4-60-21</td>
</tr>
<tr>
<td>76</td>
<td>Underside of slab B4-T3</td>
<td>4-60-17</td>
</tr>
<tr>
<td>77</td>
<td>Close-up of slab and studs, B4</td>
<td>4-60-23s</td>
</tr>
<tr>
<td>77A</td>
<td>Close-up of slab and studs, B4</td>
<td>4-60-23</td>
</tr>
<tr>
<td>78</td>
<td>Slab, studs, and beam B4</td>
<td>4-60-22</td>
</tr>
<tr>
<td>79</td>
<td>Beam 4, after removal of slab</td>
<td>4-60-19</td>
</tr>
<tr>
<td>80</td>
<td>Beam 5, after removal of slab</td>
<td>4-60-20</td>
</tr>
<tr>
<td>81</td>
<td>Longitudinal crack, B4</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Longitudinal crack, B4</td>
<td></td>
</tr>
</tbody>
</table>
8. List of Slides and Photographs (contd.)

Fig.
83** Cracked slab, B4-T3
84** Close-up, hanging loads and dials, B4
85** Hanging loads, B4-T3
86** Hanging loads, B4-T3
87** Hanging loads, B4-T3
88* End view of hanging loads, B4
89** Close-up of hanging loads and dials, B4-T3
90** Cracked slab, B4
91* B7, B8, B9, after welding of connectors (5-60-38)
92* B7, B8, B9, after welding of connectors (5-60-40)
93* B7, B8, B9, after welding of connectors (5-60-39)
94** Dimensions of beam specimens, first series of tests (6-60-71s)
95** Test set-up, top loading (6-60-72s)
96** Test set-up, hanging loads (6-60-69s)
97** M/My curve, first series of tests (6-60-70s)
98** M/My curve, first series of tests (6-60-76s)
99** M/My curve, first series of tests (6-60-75s)
100** Table of connector forces (6-60-74s)
101** Comparison of beam and pushout specimens (6-60-73s)
102 Broken stud on P9 (6-60-42)
103 Slab of P9, after failure (6-60-43)
104 Slab of P9, after failure (6-60-44)
105 Test set-up, B9 (6-60-95)
8. List of Slides and Photographs (contd.)

Fig.
106 Test set-up, B9 (contd.)
107 Test set-up, B9
 (missing)
108 Top of slab B9 (cracked)
109 End of slab B9
110 Underside of slab B9
111 Formwork for third series of tests
112 Formwork for third series of tests
113** Failure of Beam B9 (close-up)
113A** Failure of Beam B9 (over-all view)
114 End stubs after failure, B9
115 Studs on B8, after removal of slab
116** Cracks on underside of Slab B9
117** Beam B9 under load
118* End of beam-cracked slab, Beam B12
119* Test set-up, Beam B10
120 Crack over center support, B13
121 Beam B13, after failure
122 Test set-up, Beam B13
123 Cracked slab and yield zone
 over center support, B13
124** Design of Composite Beams
125** Problems Investigated
126** Summary of Test Results
8. List of Slides and Photographs (contd.)

Fig.
127** Calculation of Plastic Moment (M_p)
128** Typical Load Deflection Curve for Composite Beam
129** Calculation of Shear Connector Force
130** Ultimate Strength of Stud Shear Connectors
131** Ultimate Strength of Channel Shear Connectors
132** Load Slip Curve for Beam B-11
133** Load Slip Curve for Pushout Specimen P-6
134** Comparison of Load Slip Curves for Beams B5 and B6
135** Comparison of Load Deflection Curves for Beams B5 and B6
136** Typical Strain Distribution across Slab
137** Load Deflection Curve for Beam B7 showing Recommended Design Load
138** Deflections of B11 at Design Load
139** Load Deflection Curves for Continuous Beam
140** Stress Distribution at Ultimate Load
141** M/Mu versus ε_{qu}/C
142** Stress Distribution at M_u'
143** Strain Distribution for inadequate Shear Connection
144** M/Mu versus slip for adequate shear Connection
145** M/Mu versus deflection for adequate shear Connection
146** M/Mu versus slip for inadequate Connection
147** M/Mu versus deflection for inadequate Connection
148** M/Mu versus slip for various members
149** Design load as defined by Ultimate Strength Design
150** Load versus deflection for Continuous Beam
8. List of Slides and Photographs (contd.)

Note: Slides 279.151 thru 279.181 were formerly slides 354.1 thru 354.31.

Fig.

151 Test beams showing connector arrangement
151A* Formwork prior to pouring slab
152 Close-up of lifting hook, connectors and slab reinforcement
152A* Formwork prior to pouring slab
153 Formwork prior to pouring slab
153A** Formwork prior to pouring slab
154 Test setup
154A** Test setup
155 Taking slip measurements
156 Yielded steel section and cracked slab - Beam 1
157 Crushed concrete zone - Beam 2
158 Crushed concrete zone - Beam 2
159 Overall view of failure of Beam 3
160 Overall view of failure of Beam 3
161 Failure crack and yielded steel section - Beam 3
162** Top of steel beam and underside of slab - Beam 3
162A** Top of steel beam and underside of slab - Beam 3
162B Top of steel beam and underside of slab - Beam 3
163 Failure crack - Beam 3
164 Close-up of sheared studs - Beam 3
165 Close-up of bent studs - Beam 3

Number only - denotes both slide and photograph
* - denotes photograph only
** - denotes slide only
8. **List of Slides and Photographs (contd.)**

Fig.
166 Slip between slab and steel beam - Beam 3
167 Sheared studs and bent studs - Beam 3
167A** Sheared studs and bent studs - Beam 3
168 Crushed concrete zone around studs - Beam 3
169 Studs in Beam 4 after removal of slab
170** Dimensions of test specimens
171** Gaging of test specimens
172** Load deflection curve B3-T1
173** Load slip curves
174** Table of results
175** M/M_\text{y} comparison graph
176** Equilibrium of VQ/I at ultimate
177** AASHO design
178** The design of Composite Beams
179** The Design of Shear Connectors
180** Comparison of Test Data and Theoretical Values
181** Connector Types
8. List of Slides and Photographs (contd.)

Fig. 3 3/4"x4" Glass Slides

13** All pushout specimens, showing connectors
20** Pushout specimen in testing machine
33** Deformed connectors and concrete
50** B3 under load
58** Overall test set-up
94** Dimensions of beam specimens, first series of tests
95** Test set-up, top loading
96** Test set-up, hanging loads
97** M/My curve, first series of tests
98** M/My curve, first series of tests
99** M/My curve, first series of tests
100** Table of connector forces
101** Comparison of beam and pushout specimens
173** Load slip curves
174** Table of results
9. **List of Special Equipment**

1. Beam Tests (354)
 A. None

2. Beam Tests (279)
 A. Tie Bars Used to Produce Hanging Loads for Beams B1 and B4
 B. Special Loading Beam Fabricated to Test Specimens B7 - B9, Using the Five-Million-Pound Testing Machine as a Test Frame

3. Pushout Tests (279)
 A. Plywood Forms Used in Construction of Pushout Specimens
10. **Budget and Expenditures**

Expenditures 1 June, 1959 - 30 March, 1960 (Acct. 1051-45)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wages and Salaries</td>
<td>$6,177.83</td>
</tr>
<tr>
<td>Overhead</td>
<td>2,059.27</td>
</tr>
<tr>
<td>Expenses</td>
<td>2,493.73</td>
</tr>
<tr>
<td>Total</td>
<td>$10,730.83</td>
</tr>
</tbody>
</table>

Expenditures 1 April, 1960 - 30 April, 1960

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wages and Salaries</td>
<td>$675.95</td>
</tr>
<tr>
<td>Overhead</td>
<td>225.30</td>
</tr>
<tr>
<td>Expenses</td>
<td>153.31</td>
</tr>
<tr>
<td>Total</td>
<td>$1,054.56</td>
</tr>
</tbody>
</table>

Expenditures 1 May, 1960 - 30 May, 1960

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wages and Salaries</td>
<td>$479.45</td>
</tr>
<tr>
<td>Overhead</td>
<td>159.81</td>
</tr>
<tr>
<td>Expenses</td>
<td>222.38</td>
</tr>
<tr>
<td>Total</td>
<td>$8,861.64</td>
</tr>
</tbody>
</table>

Expenditures 1 July, 1960 - 31 August, 1960

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wages and Salaries</td>
<td>$2,532.10</td>
</tr>
<tr>
<td>Overhead</td>
<td>844.04</td>
</tr>
<tr>
<td>Expenses</td>
<td>542.78</td>
</tr>
<tr>
<td>Total</td>
<td>$3,918.92</td>
</tr>
</tbody>
</table>

Expenditures 1 September, 1960 - 30 September, 1960

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wages and Salaries</td>
<td>$631.48</td>
</tr>
<tr>
<td>Overhead</td>
<td>210.47</td>
</tr>
<tr>
<td>Expenses</td>
<td>528.83</td>
</tr>
<tr>
<td>Total</td>
<td>$1,370.78</td>
</tr>
</tbody>
</table>

Expenditures 1 October, 1960 - 31 October, 1960

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wages and Salaries</td>
<td>$1,653.54</td>
</tr>
<tr>
<td>Overhead</td>
<td>551.13</td>
</tr>
<tr>
<td>Expenses</td>
<td>96.33</td>
</tr>
<tr>
<td>Total</td>
<td>$2,301.00</td>
</tr>
</tbody>
</table>
11. List of Personnel

Project Directors

Bruno Thürlimann
June 1, 1959 - February 28, 1960

George C. Driscoll, Jr.
March 1, 1960 - to date

Research Workers

Charles Culver

Paul Zarzeczny